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Two detection opportunities for
interaction of charged particles with Ar

u Ionization electrons
u Ionization potential: ~24 eV needed per 

electron/ion pair created

u Scintillation light
u 128nm VUV, ~40 photons per keV 

(depends on E field, particle type, and 
argon purity)

u Early & late light components
u Dark matter detectors use ratio for 

discrimination of electron-like from 
nuclear-recoil-like events
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Credit: A. Fava

This talk will mostly discuss 
needs for ionization detection



Single vs. dual phase TPCs
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Thresholds: detection à tracking

u How low in energy do you need to detect events? 
u If very low energy, scintillation detection is probably better suited than ionization

u A gaseous TPC could also be considered (with tradeoff in event rate)
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Liquid vs. Gas
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u Drift velocity in LAr at E = ~500 V/cm:  1.6 mm/us
u For a gaseous argon-based TPC, using pure argon is not easy for detector HV 

stability reasons
u Usually add O(10%) CH4 or CO2, which also has the benefit of increasing drift velocity 

to ~5-10 cm/us

u Spatial resolution
u Existing 3mm wire pitch LArTPCs achieve ~1mm resolution

u Existing gaseous TPCs achieve ~100’s um resolution

u Diffusion of drifting electron cloud affects spatial resolution



ArgoNeuT à LArIAT à PixLAr

u TPC
u Rectangular TPC with horizontal drift (47 cm, 0.25t active)

u ArgoNeuT/LArIAT: 2 readout wireplanes at ±60∘ (induction, collection) + 1 shield 
wireplane (vertical wires, field shaping)

u ArgoNeuT: warm electronics

u LArIAT: BNL + MSU cold electronics, Most data collected with 4mm wire spacing (480 
readout channels total), but also collected data w/5mm and 3mm spacing

u PixLAr: 1 plane of rectangular pads 

u Light collection system
u ArgoNeuT: none

u LArIAT/PixLAr: Interior walls of TPC lined with TPB-coated reflective foils
u LArIAT: 2 cryogenic PMTs view active volume through wireplanes, SiPMs, ARAPUCA 

prototype

u PixLAr: ARAPUCA, ArcLight prototype, mounted inside field cage
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MicroBooNE

u TPC
u Rectangular TPC with horizontal drift (2.56 m, ~89t active)

u 3 readout wireplanes (2 induction at ±60∘, 1 collection 
w/vertical wires)

u 3 mm wire pitch (~8200 channels in total)

u Light collection system
u Cryogenic PMTs view active volume through wireplanes, 

with TPB-coated acrylic plates mounted in front of PMTs

2019/07/27J.L. Raaf       |      Workshop on Fundamental Physics at the Second Target Station

8

Drift 
direction

10.4 m

2.56 m

2.3 m



Argon Purity

u Longer drift requires more strict requirements on O2 contamination in the argon

u N2 requirement does not scale with drift length
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Argon Purification Concept
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Purity Monitors

u Ratio of charge at anode and cathode is related to lifetime
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MicroBooNE argon purity

u 2.5m drift length, required at 
least 3 ms electron lifetime 
(~100 ppt O2 concentration)
u Achieved much higher!
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3 ms electron lifetime (< 100 ppt O2 concentration)

11 ms electron lifetime



LArIAT argon purity

u In contrast, LArIAT was a
rollercoaster of O2-equiv 
contamination levels…

u But not a huge problem because
drift length was so short
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O2 equivalent concentration

“Purity” without LAr recirculation

3 ms electron lifetime



Simplified cryo system comparison 
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LArIAT’s Recirculation/Filtration 
System (that was never used…)

u v
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Built for LArIAT, but spec’ed
for a ~several-ton-sized TPC

LArIAT
cryostat



Infrastructure Needs

u LAr systems
u Cryostat, filters, pumps,

condenser, etc.

u Supply/storage dewars (LN2, LAr)

u Monitoring & controls 

u Power
u 120V/208V typical for electronics 

racks, pumps, filters

u Clean power/Noise isolation

u Good grounding scheme
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Other things to consider

u Triggering
u If you don’t necessarily want to rely on accelerator signals, a light collection system will be needed (trigger on 

scintillation light to start TPC readout window)
u External triggers (e.g. for through-going cosmics) are useful for calibrations
u Would be nice to do streaming data w/offline triggering? 

u E.g., MicroBooNE supernova data stream, uses circular buffer FIFO with external SNEWS alert as delayed trigger

u TPC size & type
u Must balance desired event rate with available space and funding
u If lower thresholds are desired, gaseous TPC may be a good choice
u Size sets scale for how good the purification system needs to be
u Size also sets scale for computing resources needed (e.g., MicroBooNE TPC readout generates ~33 GB/s raw 

data)
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Summary

Considering a LArTPC (or GArTPC) at the STS…
u Need to determine what are the desired thresholds (will it be used for event detection only? 

Or should it also be able to visualize tracks?) and how many events/year are needed
u Gaseous TPC would have lower event rates, but would be better at visualizing low energy tracks 

u How much space is available, and is that large enough for a TPC + infrastructure?
u Cryogenic recirculation/purification is critical for larger LArTPCs and lower energy events
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Random extra slides…
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MicroBooNE cryogenic systems

u a
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ArgoNeuT cryogenic system

u Simple system with filtration 
and recirculation
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300W 
cryocooler

Filters (O2 and H2O removal)



u a
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22SensL SiPM (6x6
mm2) w/pre-amp

Hamamatsu 
SiPM array 

(12x12 mm2) 
w/pre-amp

ETL PMT
(2-in diameter)

Hamamatsu PMT
(3-in diameter)
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u a
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Secondary & tertiary beam

“stay clear” zones
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Secondary beam

Tertiary beam LAr Detector

Cryo system



Ionization yields

u Number of ionization electrons released by the 
recoiling nucleus (Ne) depends on:
u Average excitation/ionization energy (W = 19.5 eV)

u Relative excitation vs. ionization yield (α = Nex/Ni) 

u Ion-electron recombination (R), depends on E field, 
particle type, argon purity…

u Nuclear quenching (Leff) (i.e., secondary scattering)
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u Large uncertainties in recombination models

ARIS data (NR at E = 200 V/cm)
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LArIAT

u a
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Electron lifetime (purity) decreases as LAr filter becomes saturated

After (partial?) filter regeneration, purity increases some

Delivery of bad argon (high O2 level) saturates filter again

After filter regeneration, purity increases



MiniCAPTAIN/CAPTAIN

u TPC
u Hexagonal TPC with vertical drift

u MiniCAPTAIN prototype: 32 cm drift, 400 kg active

u CAPTAIN: 1.0 m drift, 5 tons active volume

u 5 wireplanes (3 readout + 2 field-shaping/shielding)

u 3mm wire pitch

u MiniCAPTAIN 1000 channels 

u CAPTAIN: 2000 channels

u Light collection system
u Cryogenic PMTs view active volume through TPB-coated 

windows in cathode plane
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